
Journal of Statistical Physics, VoL 33, No. 3, 1983 

Random Flights in Euclidean Space. I. General 
Analysis and Results for Flights with Prescribed 
Hit Expectance Density About the Origin 

P. T. Cummings 1'2 and G. Stell  1 

Received June 2, 1983 

We consider the problem of random flights in Euclidean space defined by a 
series of displacements, ri, the magnitude and direction of each being indepen- 
dent of all the preceding ones. The displacements are not restricted to prescribed 
lattice sites. We begin with some new results generalizing a well-known lattice- 
walk relation between the probability of return to the origin and the expected 
number of times the origin is visited in the course of a random walk. We go on 
to consider flights for which the hit expectancy is prescribed within a hyper- 
sphere of radius R centered at the flight origin. For uniform hit expectance 
density (i.e., hit expectancy proportional to volume size) within the sphere, we 
solve the problem in three and five dimensions for a certain class of displace- 
ment probability densities that are prescribed only for displacement distances r 
greater than R. For each such displacement probability ~(r), we find both the 
value of the hit expectance density and the form of the displacement probability 
density for r < R that are dictated by the constraint of uniform hit expectance 
density within the sphere of radius R. In an appendix, we show the way the 
common appearance of integral equations of Ornstein-Zernike type in problems 
of random flight, liquid and lattice-gas structure, and percolation theory yield 
certain corresponding results in all three areas. 
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1. INTRODUCTION 

This paper reports the first of a series of investigations we have made into 
the properties of random walks (in Euclidean space) that are not restricted 
to regular lattice sites. Subsequent work, concerned with both more general 
random-flight properties as well as a specific subclass of random walks with 
orientational dependence, will be considered in future articles. 

Consider a point particle in a d-dimensional Euclidean space. At time 
t o its initial position is at the origin. At subsequent times t l , t  2 . . . . .  t n it 
undergoes displacements r 1, r 2 . . . . .  r n so that at time tn its position is 

n 

R~ -- ~ r i (1.1) 
i=1  

This equation defines a random flight (or random walk) if the sequence of 
jumps (ri} are mutually independent random variables with probability 
density functions ~-i(ri), each having the property that ~i(r)dr is the proba- 
bility that ri lies in the interval (r, r + dr). 

The problem of random flights has a long and interesting history, both 
as a purely mathematical problem in probability theory(I) and as a model 
for various physical and chemical processes. (2'3) 3 A large proportion of the 
effort in this field has been expended on the problem, first introduced by 
Polya, (6) in which the points r~ are confined to a countable number of 
discrete positions in the d-dimensional space, usually a regular lattice. (4'5) 
The term random walk has come to be almost synonymous with the lattice 
problem; to emphasize that our interest in this paper is in the continuum 
problem (where the r~ are not confined to a set of discrete points), we shall 
use the term random flights. For convenience, we shall refer to the object 
executing the random flight as the random jumper, and the individual 
displacements in the random flights as jumps. In all the subsequent 
analysis, we consider ~,~ = ~,. 

Typically in a random flight problem in Euclidean space one begins 
with a prescribed jump probability density r associated with the series of 
jumps, r i, i - -  1, 2 . . . . .  the magnitude and direction of each being inde- 
pendent of all the preceding ones. One is then often interested in such 
quantities as the probability w n (r)dr that the position of a particle describ- 
ing such a flight lies in the volume element dr centered at r after n jumps. 
Chandrasekhar (7) has reviewed a number of classic examples of this prob- 
lem, which dates back to the work of Lord Rayleigh .(8) More recent 

3 A number  of excellent surveys of results on random walks and related problems on periodic 
lattices have been written by E. W. Montroll; see, for example, Ref. 4. In this connection see 
also the beautiful article by Kasteleyn, Ref. 5. 
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research on random flights not restricted to a regular lattice has been done 
mainly in the context of its application to the polymer chain problem. Such 
work, through 1970, is summarized nicely by Yamakawa. (3) 

We begin in Section 2 by considering some expressions that generalize 
the well-known lattice-walk relation between the probability of return to 
the origin and the expected number of times the origin is visited during the 
course of a random walk. In the subsequent sections, we focus on a 
problem somewhat different from the usual random-flight problem consid- 
ered in Refs. 7 and 3. We contemplate a random flight in which l-(ri) is not 
fully prescribed but instead N(V) ,  the number of visits of the object in 
flight within a sphere of volume V (and radius R) about the origin, is 
prescribed by requiring that the hit expectance density e(r), defined in Eq. 
(2.4) below, be constant within the sphere. We have 

N ( V )  = 1 + E ( V )  (1.2) 

[counting the object's presence at the origin before the flight begins as the 
first visit, which accounts for the 1 in (1.2)] where E(V) is given by 

e ( v )  = re ( r )  ar (1.3) 

Thus for constant e(r) inside the sphere 

e(r) = ,, Irl < R (1.4) 

we have, in d dimensions, 

E ( V )  = , V ( d , R  ) (1.5) 

where V(d, R)  is the volume of the d-dimensional hypersphere of radius R. 
The jumps we shall consider here will be those of random direction so 

that r(ri) depends only on ]ril, which we denote as r i. If we prescribe E ( V )  
by (1.5), with c an undetermined constant, it becomes clear in the develop- 
ment given below that we can only hope to formulate a well-posed problem 
if we prescribe ~'(r~) only for r i > R. 

Perhaps the simplest such prescription is to limit each jump r i to be less 
than or equal to R so that 

~-(r;) = 0 for r; > R (1.6) 

The problem defined by (1.4) and (1.6) is as follows: are there any real 
nonnegative values of e such that real nonnegative z(ri) satisfying (1.6) can 
be found? As we shall show below, the answer is "yes" in three and five 
dimensions (which are the only dimensions in which we have analyzed this 
question). 



712 Cummings and Slell 

We can go beyond the above result as follows: in three dimensions, the 
"Yukawa" function 

q'(r/) = K r i - ' e x p [ - z ( r  i - R)] ,  K > 0, z > 0 (1.7) 

is a very natural jump probability to consider in the classical random flight 
problem, because it leads to a generating function for the w,(r) and a hit 
expectance density e(r) that are also both of Yukawa form. We have 
therefore considered the prescribed hit expectancy problem defined by (1.4) 
along with 

z(r) = K r - l e x p [ - z ( r  - R) ] ,  r > R (1.8) 

We find that for some but not all prescribed K and z there exist e(K, z) and 
"r(r) for r > R that are consistent with (1.4) and (1.8) with both e and ~-(r) 
nonnegative. 

Two key equations in our analysis [(2.7) and (2.12a)] prove to be of 
"Ornstein-Zernike" form. We show in an appendix how the common 
appearance of such equations here, as well as in liquid and lattice-gas 
theory and in percolation theory, yield certain closely corresponding results 
in all these areas. 

2. SOME GENERAL CONSIDERATIONS 

2,1. Definitions 

We begin by considering the function z(r), the jump probability 
density in d dimensions. It is defined as follows: 

(r)dr -- probability of the jumper making a jump 
from the origin to within the volume 
element dr centered on the point r (2.1) 

As it is a probability density, it satisfies the normalization 

f $  (r) dr = 1 (2.2) 

where the integral in (2.2) is over all space. Here, we shall consider only 
cases for which 

z(r) = z(r) (2.3) 

with r = [r[. 
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Another function of key interest is e(r), the hit expectance density at 
the point r. It is defined in such a way that 

1 + E ( V ) = f v [ 3 ( r ) +  e(r)] dr 

= expected number of times that the volume V 
enclosing the origin is visited by the jumper 
during a random flight of arbitrary length (2.4) 

The delta function corresponds to the contribution of a jumper who makes 
no jumps, i.e., who remains at the origin. The E(V)  is the "hit expectancy," 
i.e., the expected number of times the volume is visited once the jumper has 
left the origin. 

For a random jumper 
density satisfying (2.3) 

executing jumps according to a probability 

e(r) = e(r) (2.5) 

In general, e(r) is related to r(r) as follows: 

e(r) = ~-(r) + ~- * e(r) (2.6a) 

= ~-(r) + fds"r(s)e(r  - s) (2.6b) 

where the asterisk in (2.6a) denotes the Fourier convolution displayed 
explicitly in (2.6b). The integral in (2.6b) is over all d-dimensional space. 
For spherically symmetric ~- and e, (2.6) may be written as 

= "r(r) +fds'c(s)e(lr- sl) (2.7) e(r)  

The origin of Eqs. (2.6) can be easily seen from the following consider- 
ations. The probability density for the position of the jumper after n steps, 
w,(r), is given by (see, for example, Chandrasekhar (7~) 

wl(r )  = 
(2 .8)  

w.  (r) = * w o _ l ( r )  

so that w,(r) is the n-fold Fourier convolution of ~'(r) with itself. Equation 
(2.6) may be written in terms of the w,(r) as 

e(r) = ~, Wn(r) (2.9) 
n=l 

so that it is clear that e(r) enumerates all possible n-step jumps, n = 1, 
2 . . . . .  that land the jumper at the point r. 
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2.2. Generating Functions 

An important concept in stochastic processes is that of the generating 
function. In the random flights considered here, the natural generating 
function to consider is e(r,t), the generating function for the n-jump 
probability densities wn (r), which is defined by 

e(r,t)  = ~ t " - 'w , ( r )  (2.10) 
n = l  

where t is an arbitrary parameter. There are two important properties to 
note about e(r, t), viz., 

1 ~ e(r, t) (2.1 la) Wn+l(r)-  n! Ot t=0 

e(r) = e(r, t = 1) (2.11b) 

It is interesting to note that an integral equation for e(r, t) can be formu- 
lated as 

= ,r(r) + tfdsr s,t) (2.12a) e(r, t) 

which, on Fourier transforming can be written as 

~(k, t) = ,~(k) + t~(k)d(k, t) (2.12b) 

where ~(k,t) and r are the Fourier transforms of e(r,t) and T(r), 
respectively. Equations (2.12) are similar in functional form to the 
Ornstein-Zernike equation that arises in the statistical theory of fluids and 
is discussed in the Appendix. For each of the random flights discussed in 
this paper, ~(k, t) can be calculated trivially from (2.12b) and ~(k). For the 
random flight considered in Section 3, Case 2, e(r, t) can be obtained in 
closed form, allowing wn(r ) to be determined for arbitrarily large n by 
repeated application of (2.1 l a). 

2.3. Probability of Return to a Volume Enclosing the Origin 

For random walks (i.e., random flights on a lattice), the jump probabil- 
ity density ~'(r) is replaced by the jump probability T(rl), the probability of 
jumping to the lattice point r~; similarly, the n-jump probability density wn(r ) 
and the generating function e(r, t) are replaced by Wn(ri), the probability of 
being at the lattice point rg after n jumps, and E(r~, t), the generating 
function for these probabilities. Clearly, E(r~) = E(r i, t = 1) is the expected 
number of times that the lattice point r~ is visited during the course of a 
random walk. The lattice problem may be formally developed as a contin- 
uum problem using the continuum notation. To see the connection between 
the lattice probabilities and the continuum probability densities, consider a 
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lattice to be a collection of points ri, i = 1,2 . . . . .  and let V, be a small 
volume containing the lattice point r i and no other lattice point. For a 
random flight on a lattice, we then have the following relations between the 
two descriptions: 

'r(r) = E T(ri)d(r - ri) (2.13a) 
i = 1  

= ( ~- (r) dr (2.13b) T(r;) 
d~ v, 

Analogous relations hold between each of the quantities Wn(ri),E(ri,t ), 
E(ri) and their counterparts w.(r), e(r, t), e(r). 

For random walks, there is a well-known result (4's'9) that permits the 
probability of return to the origin, P(0), to be calculated in terms of E(r~, 
t =  1)= E(ri) 

E(o) 
P(0) - 1 + E(0) (2.14) 

For nearest-neighbor walks [i.e., T(ri) = 0 except for the r~ that are nearest 
neighbors of the origin] it is well known (2> that E(0) is infinite in one and 
two dimensions, and is finite in three and higher dimensions. (Reference 2 
also contains generalizations of this result.) Thus, a return to the origin is 
certain in one and two dimensions. 

We shall now derive the continuum analogue of the result (2.14). Our 
ultimate aim is to calculate P(V), the probability of returning to a volume 
V which encloses the origin. To calculate this quantity, it is convenient to 
introduce a new quantity f.  (V; r], r2) (noting that the subscripts here do not 
refer to lattice positions) defined as follows: 

f~ ( V; r l ,  r2) dr 2 = probability that a jumper, starting at the 

point r~, lands within volume element dr 2 

of r 2 (enclosed in V) after n jumps, such 

that this is the first time that the volume 

V is entered during the course of the n jumps. (2.15) 

In (2.15), V is a convex, closed volume, and the point r I may be contained 
in V. The quantity P(V) is clearly given by 

e(v)= f f.(V;O,r)dr (2.16) 
n = l  

so that in order to calculate P(V) a prescription for calculating f .(V; O, r) 
must be given. 

Consider Wn(r), the n-jump probability density. Clearly, w.(r) for r E V 
does not equal f .(V; O, r) since w.(r) contains contributions from flights 
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that begin at the origin and terminate within the volume V with the 
termination point of the flight being the first, s e c o n d , . . . ,  nth time that the 
volume V is entered during the course of the flight. There is a clear 
relationship between the two functions, however, since an arbitrary flight of 
n steps that terminates in the volume V can be broken up into two parts: 
the first part of i steps which terminates at a point r l E V, this being the 
first time that the volume V is entered during the course of the flight, and 
the remaining part of n -  i steps which begins at r 1 and terminates at 
r E V. This will be the case for i between 1 and n - 1; the last possibility is 
that the termination point r of the walk is the first time that the volume V is 
entered. Thus, we may write 

(r) = fvfl(v; o, r,)Wn_ l ( r  - -  r l )  dr I + . . .  W n 

+;vfn_l(V;O, r l )wl(r-  rl)drl+ fn(g;O,r ) (2.17) 

Summing the terms on the left- and right-hand sides of (2,17) over n yields 
the following integral equation: 

e(r) =p(V;O,r) + fvt,(v;O, r3e(r - r l)dr  I (2.18) 

where e(r) is the hit expectancy density and p(  V; O, r) is defined as 

p (V;0 , r )  = ~ f , (V;0 , r )  (2.19) 
n=l 

Note that (2.16) can be rewritten in terms of the function p(V; 0,r) as 

P(V)  = fvt,  ( V; O, r) dr (2.20) 

A detailed examination of (2.20) reveals that, in the case of a random 
walk on a lattice, P(V) reduces to the expression for P(0) given in (2.14) 
above if the volume V contains only one lattice point (the origin). In 
addition, if e(r - rl) is constant ( -- e) for all r, r 1 ~ V, then (2.20) yields the 
particularly simple form 

cV (2.21) P ( V )  - 1 + 

for P(V), which bears a close resemblance to (2.14). If ,r(r), e(r), and V are 
spherically symmetric, then p(  V; 0, r) will be also. 

For a given e(r), (2.18) is solved by a simple numerical procedure. For 
the random flights considered in this paper, P(V) will be calculated for the 
volume V defined by (r:  [r[ < 1/2}; that is, a ball of unit diameter 
enclosing the origin. 

Interestingly, if the limit V---~ R n is taken, then p(V; 0,r) is related to 
e(r) in the same way that ~-(r) is related to e(r) [cf. (2.6)], thus implying by 
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uniqueness that p(Rn;  O,r)= ~-(r). A moment of reflection reveals that this 
must indeed be the case, since ~-(r) is, by definition, the probability density 
of hitting the point r so that volume R n is being entered for the first time 
during the random flight. 

As in the case of the w n (r), we can define a generating function for the 
fn( V; 0, r), denoted by p(  V; 0, r, t), which is related to the f~( V; 0, r) in the 
same way that e(r,t) is related to the wn(r ) [cf. Eq. (2.10)] and moreover 
reduces to p(V;0, r )  at t = 1. From (2.17) and the definitions of the two 
generating functions, we conclude that they are related by the following 
integral equation: 

e(r,t) = p ( V ; O , r , t )  + tfvP(V;O,r , , t)e(r - r, , t )dr ,  (2.22) 

Equations (2.12) and (2.22) suggest a natural sequence to be used in 
finding the generating functions we have introduced. First, (2.12a) can be 
used to obtain e(r, t) from ~-(r), and this e(r, t) can be used in (2.22) to 
obtain p(  V; 0, r, t). In the case in which r(r) is initially not fully prescribed, 
but e(r) is given for Irl < R by Eq. (1.4) and ~-(r) is given for Irl > R by Eq. 
(1.6), then (2.6) can first be used to find ~-(r) for all r as discussed in the 
following sections. 

3. T H R E E - D I M E N S I O N A L  R A N D O M  F L I G H T S  

Taking Fourier transforms of both sides of (2.6) yields, upon re- 
arrangement, 

~(k) - 1 - 4(k) (3.1) 

is used to denote the Fourier transform of the 

f (k) = f dr exp(ik- r)f(r) (3.2) 

where the symbol f(k) 
function f(r), viz., 

Note that if f(r) = f (r )  thenf(k) = f (k ) ,  k = [k[. [From this point onward in 
this paper, we shall assume that ~-(r) = t-(r), and so from (2.5) e(r) = e(r) as 
well.] The relation (3.1) makes it clear that if -r(r) is prescribed for all r, 
then e(r) is immediately determined via ~(k). 

We use the term "free random flight" (FRF) to refer to a random 
flight problem defined by a fully prescribed jump probability ~'(r)--that is, 
a random flight problem in which r(r) is given for all r. We shall refer to a 
random flight problem in which ~-(r) and e(r) are prescribed on complimen- 
tary domains as a constrained random flight (CRF) since we may view the 
prescription of e(r) on some domain as a constraint on the form of r(r) on 
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that same domain. In Section 3.1, we describe two FRFs in three dimen- 
sions, and in Section 3.2 we formulate CRFs that are characterized by 
using functional forms for ~-(r) for r > 1 that coincide with those discussed 
in Section 3.1. In Section 3,.2, we additionally solve the CRFs formulated 
there using a Wiener-Hopf factorization technique. Thus, the impact of the 
constraint on the probability of return to the vicinity of the origin, P(V), 
and on the asymptotic form of e(r) can be determined. 

3,1. The Free Random Flight (FRF) in Three Dimensions 

Case 1. The Simplest FRF. The classic FRF problem in three 
dimensions can be defined by a spherically symmetric jump probability 
given by 

~'(r) = ~ 8 ( r -  1) (3.3) 

where d(r) is the one-dimensional Dirac delta function. Physically, this 
corresponds to jumps that are random in direction and of length 1 (in 
suitably chosen units). For this problem, as noted above, it is straightfor- 
ward to calculate e(r). For ~-(r) given by (3.3), r is given by 

r  sink (3.4) 
k 

and ~(k) follows immediately from (3.1). Although e(r) is most readily 
obtained by numerical Fourier inversion of ~(k), a number of its analytic 
properties may be easily found: 

i. From the exact analytic forms of Wn(r), (3"7) it is clear that e(r) 
contains a delta function located at r - 1 [given by (3.3)] and is discontinu- 
ous at r = 2 with discontinuity 1/(16~r). Apart from this, e(r) is a continu- 
ous function. 

ii. It is easily verified that 

60(kO),  k oO  (3.5) 

Consequently, e(r) is long-ranged and its asymptotic form is given by 

e(r)___) 3__3_ 1 r---)oo (3.6) 
2~r r '  

Combining (3.4) and (3.1), a formal expression for e(r) may be obtained as 
the inverse Fourier transform of ~(k). The function e(r), obtained by 
performing this inversion numerically, is shown in Fig. 1. 

We solve (2.18) for p(V; 0,r) and perform the integral in (2.20), using 
standard numerical techniques, yielding 

P ( V )  -- 0.204 (3.7) 
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Fig. 1, The jump probability density r ( r )  and the hit expectance density e(r) for the FR F  
problems considered in Section 3.1. The solid curve exhibits e(r) for the FRF considered in 
Case 1 with 7(r) given by (3.3). The other results are for the FR F  with ~'(r) given by (3.10), 
and both e(r) (labeled by the symbol e) and r ( r )  (labeled by the symbol ~-) are shown for 
z = 1 /2  ( . . . . .  ) ,z  = 61/2( . - - ) a n d z  = 5 (---).  

As expected, P(V) is less than unity, indicating that in this three- 
dimensional continuum flight return to the vicinity of the origin is not 
assured. This is a well-known result, although the dependence of the return 
probability on dimensionality is most often discussed in the context of 
lattice walks. 

Case 2. FRF with Jump Probabil i ty Density of Yukawa  Form, 
As noted in the Introduction, a natural jump probability to consider in the 
FRF problem is the Yukawa function 

z(r) = K e x p [ - z ( r -  1)] (3.8) 

If (3.8) is the prescribed form of T(r) for all r, then the normalization of 
~-(r) requires that 

z 2 
K = ~ e x p ( -  z) 
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so that 

~'(r) - z2 e x p ( -  zr) (3.9) 
4~r r 

is an appropriate jump probability for use in the FRF  problem. The 
Fourier transform of (3.9) is easily taken and ~(k) calculated from (3.1) as 

z 2 
~ ( k ) -  k2 

Thus, the form of e(r) can be found analytically for all r as 

z 2 1 
(3.10) e ( r ) -  4~r r 

Note that z is unconstrained (except that z > 0). The functions e(r) and 
r are shown in Fig. 1 for various values of z, including z = 6 I/2, the 
value that causes the e(r) of (3.10) to match the asymptotic form of the 
FRF problem considered as Case 1 above. Notice that on the scale of Fig. 
1, r and e(r) are very similar for z = 1/2; in addition, although ~'(r) for 
z = 6 l/2 and z = 5 are similar, the corresponding e(r) differ considerably in 
magnitude. 

Using the analytic expression (3.12) for e(r), p(V; O, r) and P(V) are 
calculated numerically from (2.18) and (2.20), the results for P(V) being 
given in Fig. 12. (This figure is discussed in greater detail in Section 3.2, 
Case 3.) Interestingly, if z ~ or P( V)--~ 1. This limit corresponds to a jump 
probability that is simply a delta function at the origin. 

For any finite z, P(V) < 1 and, as for the FRF considered in Case 1 
above, return to the volume V is not assured. Note that z functions as an 
inverse range parameter for the jump probability density; the greater the 
range of the latter, the lower the probability of return to the neighborhood 
of the origin. 

The Fourier transform ~(k,t) of the generating function e(r,t) dis- 
cussed in Section 2.2 is given by [see Eqs. (2.12)] 

z 2 
~(k,t) = 

(1 - t)z 2 + k 2 

the inverse transform of which is obtained trivially as 

e ( r , t ) -  z2 e-Z(![t)'/2r (3.11) 
4~r r 

This expression enables the wn(r ) to be obtained for arbitrarily large n by 
repeated application of (2.11a). The results for n = 1 . . . . .  5 are given in 
Table I. To our knowledge, the FRF problem with jump probability (3.9) 
has not previously been considered in detail [in contrast to the FRF 
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Table I. The n-Jump Probability Densities w.(r), 
n = 1 to 5, for the FRF with Jump Probability of 

Yukawa form a 

n wn(r ) 

2"2 exp( -- zr) 
1 

4~r r 
Z 3 

2 8~ exp( - zr) 

z3(1 + zr) 
3 exp( - zr) 

32~r 
z3(3 + 3zr + z2r 2) 

4 1927r exp( - zr) 

z3(15 + 15zr + 6z2r 2 + z3r 3) 
5 exp( - zr) 

1536~r 

a See Section 3.1, Case 2 of the text for details. 

problems with the 1"(r) considered in Case 1 above and with ~-(r) of 
Gaussian form]. 

3.2, The Constrained Random Flight (CRF) in Three Dimensions 

Suppose we wish to prescribe the hit expectance density on a sphere 
about the origin, which we take here to be of unit radius without loss of 
generality. It is clear that z ( r )  can itself then only be prescribed outside the 
unit sphere. Let us therefore contemplate the problem defined by the 
conditions 

~-(r) = fl(r) ,  r > 1 
(3.12) 

e ( r )  = f2(r), r < 1 

where fl and f2 are known, nonnegative functions. An appropriate tech- 
nique for the solution of the problem posed in (3.12) is the Wiener-Hopf 
technique. O) 

In the following sections we consider various problems for odd dimen- 
sionalities of the form (3.12) with e(r)  restricted to be a constant for r < 1. 

Case 1. Jump Probability Density of Finite Range. We begin 
with an f l ( r )  of the simplest possible form, f l ( r )  = 0, a property shared by 
the first of the two FRFs discussed in Section 3.1. The problem at hand is 
thus defined by 

z ( r )  = O, r > 1 
(3.13) 

e(r )  = c, r < 1 
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For technical convenience we initially assume that the normalization condi- 
tion (2.2) is replaced by the condition 

f'~(r)ar= 1 - ~2, ~ > 0 (3.14) 

and we will subsequently take the limit a ~ 0, recovering (2.2), once our 
analysis is complete. The reason for doing so is that for a = 0, e(r) is 
long-ranged, which renders (2.6) a singular integral equation. Although this 
presents no difficulty in principle, 4 we find it more convenient to perform 
our analysis off a = 0, taking the limit a ~ 0 in our final equations. 

The method used is an adaptation of that introduced by Baxter (10 for 
the analytic solution of similar problems that arise in the statistical theory 
of fluids. (A discussion of the relation between the present analysis and the 
statistical mechanical problem is given in the Appendix.) We rewrite (3.1) 
in the form 

[1 + d(k) ] [1  - ? (k) ]  -- 1 (3.15) 

For O(k) satisfying (3.13), 1 + ~(k) has no poles in some strip [Im(k)J < 
where ~ > 0. Hence, 1 -  $(k) has no zeros in the strip and is positive. 
Consider the function 

A ( k )  = 1 - $ ( k )  (3.16) 

As a result of the above comments, logA(k) is analytic in the strip 
Jim(k)] < 4. Moreover, since ~-(r) is finite ranged, it follows that 

exp(ik) 
$ ( k ) ~  k (3.17) 

and so for real k, ~ ( k ) o 0  as Jk[~  oe. In fact, ~ ( k ) ~ 0  for I k [ ~  oe in the 
upper-half k-plane. 

Choosing a rectangular contour F within the strip [Im(k)J < ~ and 
enclosing the real k axis, the Cauchy residue theorem states that 

A 

,, f logA (z) dz 
l~ z~--k (3.18) 

The contour F is shown in Fig. 2 in which the c o n t o u r s  F i ,  i = 1 . . . .  , 4  are 
defined. From (3.17), the integrals along 172 and 174 are zero. Hence, 

^ A 

* fr logA(z)dz fr logA(z)dz 
logA(k) = i z ~ k  + 3 z -  k (3.19) 

4 Standard techniques for dealing with such singularities are discussed at length in Noble. O) 
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't 

Ira(k) 

> 

> 

Re(k) 

Fig. 2. The contour F used in (3.20), noting that F = F 1 + I? 2 + 1" 3 + F 4 .  Note that the Re(k) 
is infinite along F 2 and I" 4 . 

if we define 
A 

( .  logA (z) dz 
log O ( k ) =  ~, 3 z - k (3.20) 

then we find the following: 
i. log Q(k) is analytic and has no poles in the upper half-plane; 

logd(z) dz 
ii. f r  - log Q( - k )  

I z - - k  

Thus, within the strip IIm(k)l < ~. 

.~(k) = Q(k)  0 ( -  k) (3.21) 

Here Q(k) is regular and has no poles in the upper half-plane. This 
completes the constructive splitting characteristic of the Wiener-Hopf  
technique.(]0) 

Consider the functions 8(k) and 4(k) more closely. It is straightfor- 
ward to show that, by choosing the z axis of the coordinate system to lie 
along k, 

(k) = 4~r (_~176 E(r)cos  kr (3.22) 
d O  

where 

E(r) = f~176 te( t) (3.23) 
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Thus, ~(k) [and similarly ~(k)] can be written as the one-dimensional 
Fourier transforms of the functions E(r) and T(r), where 

1 
T(r) r < = fr dtt'r(r), 1 

= 0, r > 1 (3.24) 

We now proceed with the factorization. Since Q(k)---> 1 as Ikl~ ~ in the 
upper half-plane, define a function Q(r) by 

0 (k) = 1 - 2~rf_~dr exp(ikr) Q (r) (3.25) 

The inverse of (3.25) is given by 

2~rQ(r) = ~ f ~ d k  e x p ( - i k r ) [ 1  - {~(k)] (3.26) 

For r < 0, the integral in (3.26) may be closed around the upper half-plane 
where Q(k) has no poles and the integral along the semicircular arc is zero 
[from (3.17)]. Thus, 

O(r) = 0 r < 0 (3.27) 

For r >i 1, the integral in (3.26) can be closed around the lower half-plane 
where the analytic continuation of 0(k) ,  A(k) /  O ( -  k), must be used. 
Since 0 ( -  k) has no zeros in the lower half-plane, A(k) is analytic for all k 
and the integral on the semicircular arc is zero, then 

Q(r) = 0, r/> 1 (3.28) 

Equation (3.25) becomes 

O(k) = 1 - 2~r foldrexp(ikr)O(r ) (3.29) 

We now need only find the equations for T(r) and E(r) in terms of Q(r). 
We begin by writing (3.1), (3.16), and (3.21) as 

Q(k)[1  + O(k)] = 1 / Q ( - k )  (3.30) 

1 - ~(k) = 0 ( k )  0 ( - k )  (3.31) 

Multiplying both sides of these equations by exp ( - i k r )  and integrating 
over k yields 

= Q(r) + 2~rfoldt O(t)E([r - tl), r > 0 (3.32) E(r) 

= O(r) - 2~rfrldt O(t)Q(t - r), 0 < r < 1 (3.33) T(r) 

[Note that the right-hand side of (3.30) evaluates to zero by closure around 
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the lower half-plane.] Differentiating (3.32) and (3.33), we obtain the 
desired equations 

re(r) = - Q'(r)  + 2~r fooldt Q(t ) (r  - t)e(lrtl), r > 0 (3.34) 

= - Q'(r)  + 27rf ldt  Q ' ( t ) Q ( t  - r), 0 < r < 1 r,c(r) (3.35) 

Note that from (3.14), (3.16), and (3.21) 

1 - ~(0) = a 2 = A(0) = [ 0(0)]  2 (3.36) 

Our interest is in the limit a = Q(0)-->0. From this point on, we assume 
that this limit has been taken. 

To complete the solution of the problem posed in (3.13), we must 
determine the function Q(r). Consider (3.34) for 0 < r < l: from (3.13) we 
have 

re = - Q'(r)  + 2~r fooldt Q(t ) (r  - t)r (3.37) 

which is a Fredholm integral equation of the first kind with degenerate 
kernel. The solution is given by 

O'(r)  = ar + b (3.38) 

where a and b, determined by substitution into (3.37), are given by 

a = e [ -  l + 27r foldt Q(t)  ] (3.39a) 

b = -,2 f dt tQ(t)  (3.39b) 

From (3.39a) and (3.29), we see that 

a = ea = 0 (3.40) 

by normalization. Thus, using the conditions (3.27) and (3.28), (3.38) yields 

O ( r ) = b ( r -  1), 0 <  r <  1 

= 0 elsewhere (3.41) 

The parameter b may be determined by substituting (3.41) into (3.39a) and 
(3.40). We find that 

b = - 1/Tr (3.42) 

The value of e is then found by substituting (3.41) and (3.42) into (3.39b), 
yielding 

e = 3/~r (3.43) 
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The function ~-(r) may then be obtained from (3.35) as 

T ( r ) = l r ,  0 <  r <  1 
q? 

= 0 elsewhere (3.44) 

Since e and ~'(r) are manifestly nonnegative, we have found by construction 
a solution to our random flight problem. 

The function e(r) may be found for r > 1 analytically by a zone-by- 
zone analysis of (3.34) as a difference-differential equation [see the discus- 
sion following Eq. (3.47) below], or numerically using standard techniques. 
In Fig. 3, we plot the functions ~-(r) and e(r) obtained above, with the 
results for the free random flight included for comparison. 

An analysis of the large-r behavior of e(r) (similar to that given in 
Section 3.1 above) yields 

e(r)___> 9.__9_ 1 r--->oo (3.45) 
47r r '  

In common with the free random flight, e(r) is long-ranged; however, we 
note that the amplitude of the decay for the random flight constrained by 
(3.13) is larger than that in the free random flight case. 

The discontinuity in e(r), which occurs at r = 1, is given by 

e(1 + ) = e (1-  ) - 1/~r (3.46) 

1.0 ' J ' I ' 

e(r) 

0"5 

0 " 0  , I , I , 
0 1 2 3 

r 

Fig. 3. The hit expectance density e(r) for the CRF considered in Section 3.1, Case 1 [the 
problem defined by (3.13)] is shown as the dashed curve. The corresponding result for the 
FRF with ~-(r) given by (3.3) is given by the solid curve and is included for comparison. 
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Since e(r) is constant for r < 1, then for any r l , r  2 E V, the ball of 
diameter 1 enclosing the origin, Ir2 - rl l  < 1 so  that e ( I r  2 - r l l )  is constant 
over V. Thus, P(V) is given by (2.21) which, combined with (3.45) yields 

P ( V )  = 1/3 (3.47) 

Note that this is larger than P(V)  for the random flight discussed in 
Section 3.1, Case 1, indicating that the constraint of constant hit expectance 
density inside the unit sphere increases the probability of return to the 
volume V. 

Although we have found it most convenient to find e(r) numerically, 
we indicate briefly one method by which a closed form analytic expression 
for e(r) can be obtained. Consider the function f i r ) =  re(r); for r > 1, 
(3.34) may be written as 

f (r)  = 2qr fol at Q(t ) f (r  - t) (3.48) 

Using the functional form (3.43) for Q(r) and differentiating twice, we 
obtain the following delay-differential equation for f(r):  

f ' ( r )  - 2f'(r) + 2f(r) = 2f(r - 1) (3.49) 

A standard technique for such equations (12) is to solve (3.49) iteratively in 
the domains I n = ( r : n < r < n + 1 }, n = 1, 2, 3 . . . . .  as ordinary inhomo- 
geneous differential equations. As an example, consider r E 11 . The func- 
tion f i r  - 1) is known trivially in this case [= ~(r - 1)] and the solution of 
(3.49) is immediate. This yields 

e ( r )=  3 1 1 e - (~-0 [ c o s ( r -  1) 4 - s i n ( r -  1)], 1 ~< r~<2 
r 7? r 

after the boundary conditions [the value of f(r) and f ' ( r )  at r = 1] are 
applied. Clearly, this method may be repeated to obtain an analytic 
formula for e(r) at larger r, although the algebra involved quickly becomes 
tedious. 

Case 2. Jump Probability Density of Yukawa Form Beyond 
r = 1. Consider now the case where fl(r) is taken to be of Yukawa form 
for r > 1, viz., 

T ( r )=  K e x p [ - z ( r -  1)], r > 1 (3.50a) 

= E, r < 1 (3.50b) 

At this point, the parameters K and z are regarded as arbitrary positive 
numbers. 
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Equation (3.50b) may be written as 

T(r) = T0(r ) + K e x p [ - z ( r - 1 )  1, 
where 

r > 0  (3.51) 

where 

Q(r) = f l e x p [ - z ( r -  1)], r > 1 

where 

K (3.57) 
B = zO(iz)  

A§ 
This differs from (3.28) due to the contribution from the pole in A .(k) in 
the lower half-plane at k = - iz. 

It is convenient to define a function Qo(r) by 

Q(r)  = Qo(r) + fl exp[ - z ( r  - 1)], r > 0 (3.58) 

Qo(r) = O, r >>. 0 (3.59) 

Thus, (3.57) may be written as 

~rfl2eZ- z f l [ 1 - 2 ~ r f o l d r e x p ( - z r ) Q o ( r ) ]  + K = O  (3.60) 

(3.56) 

T0(r ) = 0, r > 1 (3.52) 

Thus, the Fourier transform of r(r), "~(k), is given by 

A 4~rKe________~ ~ (3.53) 
4(k)  = T0(k ) + Z2 4" k 2 '  IIm(k)t < z 

The Wiener-Hopf  factorization formally proceeds as before, although 
we note that the contour used in (3.18) must lie inside IIm(k)] < z as well as 
[Im(k)l < f. With this proviso, we find that, as before, 

A(k )  = 1 - ~(k) = Q(k)  Q ( -  k) (3.54) 

where Q(k) is regular, has no zeros in the upper half-plane, and is related 
to a real space function Q(r) by (3.25) and (3.26). The latter function has 
the property 

O(r) = 0, r < 0 (3.55) 

derived in the same way as (3.27). For r > 1, we close the integral in (3.26) 
around the lower half-plane where we must use the analytic continuation of 
1 - O.(k), A t ( k ) /O .  ( -  k). Here, .4t(k) is itself the analytic continuation of 
A(k) into the lower half-plane. We find that 
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The equations relating e(r) and ~-(r) to Q(r), (3.34) and (3.35), become 
for the present problem 

= - Q'(r) + 2~rfoo~176 Q(t)(r  - t ) e ( l r  - t]), r >1 0 (3.61) re(r) 

rr = - Q'(r) + 2~r f ~ d t  Q ' ( t )Q( t  - r), r/> 0 (3.62) 

To determine Qo(r), we consider (3.61) on the domain 0 < r < 1 where 
e(r) is known, finding 

Qg(r) = ar + b +/3dz e x p [ - z ( r -  1)] (3.63) 

where 

a -- e [ -  l + 27r fo'dt Q~ + 2~rfleZ (3.64) 

b=e[ -27r fo 'd t tQo( t  ) 2~r/3eZz 2 (3.65) 

d = 1 - 27r ~(z) (3.66) 
z 

Here, if(s) is the Laplace transform of rg(r), where g(r) is defined by 

"r(r) = e + g(r) (3.67) 

so that, explicitly, 

~(s) = f0~176 - sr)rg(r) dr (3.68) 

As before, the parameter a is related to a by 

a = aE (3.69) 

and so, by normalization, a = 0. Combining (3.63) and (3.59), we find 

O o ( r ) = b ( r - 1 ) +  f l d { 1 - e x p [ - z ( r - 1 ) ] )  (3.70) 

The condition a = 0 yields the following result for b [when (3.70) is 
substituted into (3.64)]: 

b =  bo + blfl  + b2fld (3.71) 

where 

b 0 = _ l ~ r ,  b l -  2ezz ' b2= 2e----~ZI-lz 1 ~] (3.72) 

Here, we have introduced the following notation: the function 

f ( r )  = ~ ~ a i j rJ - lexp[- ( i  - 1)z] (3.73) 
i=1  j = l  
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is represented by the matrix A given by 

[A l/j= a/j (3.74) 

The equation for b, (3.63), yields the following expression for c: 

3[1 27re~z f l -  27re---~ [ - l z  1 0 ]  fld } 1  

~r 1 - - ~ - T - [ - 3  ~re z 6 - 2  0 Bd 

Note that K = 0 implies that B = 0, and c reduces to the value found for the 
CRF with finite-ranged jump probability discussed in Case 1 above. There 
is no guarantee that the e given by (3.75) is nonnegative for a given pair of 
K and z, so that it is not yet clear whether a solution to the problem as 
posed has been found. 

Using (3.70), (3.60) may be written more explicitly as 

~r/32e~[1 - d ( 1 - e - z )  2]-z/3+K+b2--y~[z -11 - 0 1 ] / 3 = 0  (3.76) 

We require one further equation to completely determine both/3 and 
d. The second equation comes from considering (3.61) for r > 1 and writing 
it in terms of g(r). It is found that 

rg(r)= b +/3dzexp[-z(r- 1)1 

+ 2~rfordt Q(t)(r - t)g(r - t), r/> 1 (3.77) 

Note that, comparing (3.50a) and (3.67), 

g(r) = 0, r < 1 (3.78) 

Multiplying both sides of (3.77) by exp(-sx) and integrating from 1 to oo 
yields 

e-" + 2~r0(s ) g(s) (3.79) 
zq-s  

where ~(s) is defined in (3.60) and 0(s) is the Laplace transform of Q(r). 
Noting that 

O(is) = 1 - 2~r0(s ) (3.80) 

(3.79) can be written as 

(b  t~dZ )e-,/O(is) 
= + z + 

In particular, 

7 -T e - Z / Q ( i z )  

(3.81) 

(3.82) 
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which, making use of (3.57), may be written as 

b 13d  -zZ13 
g(z) = z + T )e T (3.83) 

Expressing g(z) in terms of d [using (3.66)], (3.83) becomes 

2~re-Zgfi 2 + (~re-Zfi 2 + Kz) f l d -  KzB = 0 (3.84) 

Equations (3.76) and (3.84) must now be solved simultaneously. Solving 
(3.76) for 13d, making use of (3.72), yields 

Ke -z + De-~fl + Eft 2 
13d = F13 (3 .85)  

D = I [  - 2  2 - 1 ] z  2 0 0 (3.86) 

~r [ 4 - 4  ~] (3.87) 
E = 7 ~  - 4  0 

[ 4 - 4 1 ]  
- 8 0 2 (3 .88)  

F =  _-5 4 4 1 

Substituting for b and 13d in (3.84) yields the following quartic equation 
for fl: 

q't'~ 4 "['- X13 3 - 2~'Kfl 2 + OKfl + K 2 = 0 (3.89) 

where 

X = I [  2 0 0]  (3.90) 
z - 2  - 2  - 1  

and D is given by (3.86). There are four possible solutions to (3.89). An 
analysis of the small-K behavior of these solutions, labeled 13i, i = 1 . . . . .  4, 
reveals that 

1 i l l-+- ~ K +  O(K2), K--+0 (3.91) 

132,3 ---> ' ~ ( - D / X ) I / 2 K 1 / 2 - [ -  O ( K ) ,  K- f rO (3.92) 

X + O(K) ,  K---> 0 (3.93) 134--- > - -  7/.2 

As K ~  0, the solution of this problem should approach that of the CRF 
with jump probability of finite range--that is, the problem considered 
above. Thus, as K-->0, 13o0 as well; this eliminates 134 a s  the correct 
solution of the problem. In addition, D / X  can be positive depending on 
the value chosen for z, this suggests that fi2 and 133 are not generally 
acceptable as solutions to this problem. This leaves 131 as the one acceptable 
solution, and all calculations presented use this root of the quartic (3.89). 
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The  final quant i ty  of interest is the functional  form of ~-(r) for r < 1. 
After  some algebra, (3.62) yields the following functional  form: 

eZ[ e x p ( - z r ) -  l] + 2~rfl(d_ l ) ( z + _ ~ d  ) • b [ e x p ( - z r )  - 1] 
? r 

(3.94) 

The  large-r  asymptot ic  fo rm of e(r) is found to be 

~ ( r ) ~  1 . 1 ,  ~ 
r I l l  2 2~re z fl + 2~re z 2 0 0 fld 

z 2 - 7 -  - 2  - 2  - 1 
4~{  7rb3 

and the discontinuity in e(r) at r = 1 is given by 

e(1 + )  = e ( 1 - )  + b + fidz 

(3.95) 

(3.96) 

20 

15 

10 

0 
0.0 

/ 
_ :/ /// 

. . " "  unphysica[ solution 

0.25 0"5 
K 

Fig. 4. The half-space in the (K,z) plane for which the CRF problem posed in (3.50) has 
"physically" acceptable solutions [i.e., the resulting ~'(r) is nonnegative]. The set of (K,z) 
values for which e(r) is continuous is shown as a dotted curve. A description of the latter 
problem is given in Section 3.2 (Case 3) of the text. 
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For  arbi trary,  nonnegat ive  K and  z it is not  clear a priori whether  a 
solution to the r a n d o m  flight p rob lem posed in (3.50) exists, i.e., a solution 
to (2.6) such that  the l-(r) and  e(r) which satisfy (3.50) are nonnegat ive  for  
all r. [It is necessary and  sufficient that  ~-(r) be  nonnegat ive  for  all r.] To  
satisfy this requirement ,  it turns out  that  for any  given value of K, z mus t  
exceed a m i n i m u m  value groin(K); otherwise, z(r) is negative at small r. In  
Fig. 4, we exhibit  a por t ion  of the (K, z) half-space for which solutions of 
(3.50) are probabilist ically,  and  hence "physical ly ,"  acceptable  [i.e., satisfy 
the nonnegat iv i ty  condi t ion r ( r )  >~ 0]. 

In  Fig. 5, the p a r a m e t e r / 3  is displayed as a funct ion of K for  various 
values of z. The  dashed  curve in this figure corresponds  to the limit of 
acceptable  solutions [i.e., solutions satisfying the condit ion ~-(r)/> 0]. 

Figures 6 and  7 show the behavior  of c and  P(V) ,  respectively, as a 
funct ion of K for  fixed values of z. At  K = 0, the quantit ies reduce to their 
respective values for the C R F  considered in Case 1 above.  For  fixed z, 
increasing K corresponds  to loading more  of the j u m p  probabi l i ty  density 
outside the unit  sphere centered on the origin; consequently,  when z is held 
constant,  the expectance  density c inside the unit  sphere is a decreasing 

0-I 

,8 

0,0! 

0.( 
0.0 

' I ' 

0-25 0.5 
K 

Fig. 5. Behavior of the parameter /3, the solution of (3.89), as a function of K for various 
values of z. Each solid curve corresponds to the fixed value of z by which it is labeled. The 
dashed curve is the limit of acceptable solutions (cf. Fig. 4). The dotted curve is the locus of 
points along which ~'(r) and e(r) are continuous at r = 1. 
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Behavior of the parameter  c as a function of K for various values of z. The 
convention for the solid, dashed, and dotted lines is the same as that for Fig. 5. 

0.4. 

P(V) 

0 .2  

I I ' 

I ...""" " 

l /  

/ 
o" / 

,*~ / 
, /  

0.0 i [ J 
0"0 0-2 5 0-5  

K 

Fig. 7. The probability of return to the volume V, P(V) ,  shown as a function of K for 
various values of z. The convention used for the solid, dashed, and dotted curves is the same 
as that used in Fig. 5. 
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function of K. Similarly, the probability of returning to the volume V 
decreases as K is increased. 

In Fig. 8, ~-(r) is shown for a fixed value of z (z = 3) and various K. 
For this value of z, K must satisfy K < 0.1558 for the solution to be 
acceptable. The reader's attention is drawn to the value of r at the 
origin, which is initially zero at K = 0, increases to a maximum value, and 
then decreases, eventually becoming negative for K > 0.1558. 

The hit expectance densities (corresponding to the jump probability 
densities of Fig. 8) are given in Fig. 9. It is interesting to note that, for K 
small, e(1 § < e(1-) ,  whereas for K =  0.1558, e(1 § > e(1-) .  This sug- 
gests that, for a given z, there exists a value of K = K(z) which causes r 
and so e(r), to be continuous at r = 1. We now consider this problem in 
detail. 

Case 3. Continuous Jump Probability Density of Yukawa Form 
Beyond r = 1. We consider the problem posed by Eqs. (3.50) with the 
additional constraint that e(r) be continuous at r = 1. The solution is 
clearly obtained using the analysis given in Case 2 of the CRF given above, 

0.4 

Cr) 

0.2 

0.0 
0 3 

/ , ' .  

of~ ". ~.'.. 

/ -  +?.  
o ~ 1 7 6  ~. " ~ % ~  ~ 1 7 6  "-.. o.~Oo . , l  
I I ~ 1"- ~ t"t'L'*'~'[-- - 

1 2 
r 

Fig. 8. T h e  j u m p  probabi l i ty  densi ty  ~-(r) for the  C R F  cons idered  in Case  2 of Section 3.2 
with z = 3 and  for K =  0 ( ), K =  0.05 ( - - - ) ,  K =  0.1 ( . . . . .  ), a n d  K = 0.1558 (. - -). 



736 Cummings and Stell 

Fig. 9. 
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The hit expectance density e(r) for the CRF considered in Case 2 of Section 3.2 with 
z = 3 and  for the same values of K as those displayed in Fig. 8. 

the continuity condition yielding the constraint [see (3.96)] 

b + Bdz = 0 (3.97) 

For given z, we numerically determine K = K(z) which causes (3.97) to be 
satisfied. In Fig. 4, the locus of (K, z) values for which (3.97) is satisfied is 
shown as a dotted curve; in Figs. 5-7, the corresponding points are also 
displayed. 

In Figs. 10 and 11, the jump probability density and expectance 
density are shown for various values of z. 

It is interesting to compare P (V)  for the CRF considered here with 
P(V) for the FRF in which ~(r) is of Yukawa form over the whole range of 
r. This is done in Fig. 12, where P (V)  is plotted as a function of z for the 
two random flights. Whereas P(V)-) 1 as z - )  oe in the FRF, P(V) for the 
CRF does not. It appears that in the latter case, P(V)-)1/3 as z _ ) m ,  
which is consistent with the result for the CRF with jump probability 
density of finite range. However, this limit is not uniform, since the CRF 
with finite-ranged jump probability density is not continuous. 
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Fig. 10. 

Fig. 11. 
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The jump probability density "r(r) for the CRF considered in Case 3 of Section 3.2 
f o r z = 1 0 (  ) , z = 5 ( - - - ) a n d z = 2 (  . . . . .  ). 

1.0 

e(r)  

0"5 

0"0 
0 

' I ' I ' 

f , I , 
1 2 

r 

The hit expectance density e(r) for the CRF considered in Case 3 of Section 3.2 for 
the same values of z as those displayed in Fig. 10. 
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1"0 

P(V) 

0"5 

0-0 
0 

' I ' 

~ 1 7 6  

5 10 

Fig. 12. The probability of return to the volume V, P(V),  as a function of z for the FRF in 
which *(r) is of Yukawa form for all r (Case 2, Section 3.1) ( ) and for the CRF in which 
r(r)  is continuous and of Yukawa form for r > 1 (Case 3, Section 3.2) (- - -). 

4. F IVE-DIMENSIONAL RANDOM FLIGHTS 

A point in five-dimensional space (Xl,X2,X3,X4, X5) may be repre- 
sented in five-dimensional spherical polar coordinates as (r, O, % *1, ~), where 
the two representations are related by 

X 1 --  rCOS0,  

x 2 = r sin 0 cos +, 

x3 --- r sin 0 sin r cos 7, 

x 4 = r sin 0 sin r sin ~ cos 4, 

x 5 = r sin 0 sin r sin 7/sin 

The Jacobian of this transformation is given by 

J = r 4 sin30 sin2r sin ~/ 

and the element of solid angle d~2 satisfies 

d~  = sin30 sin2ff sin 7/dO dep d~ d~, 

Thus, for a jump probability density ~-(r) 

0,<<0<~r 

0 < ~ < 2 ~ r  

(4.1) 

(4.2) 

fd~2 = 8'h'2 (4.3) 
3 

[note the implied spherical 
symmetry through the dependence of ,r(r) only on r = [r[] in five dimen- 
sions the normalization requirement becomes 

f f ar= l (4.4) 
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4.1. The Free Random FUght (FRF) in Five Dimensions 

Let us consider the situation in which the random jumper makes jumps 
in a random direction each of unit length. This is the five-dimensional 
analog of the problem considered in Case 1 of Section 3.1. The jump 
probability density z(r) in the present case must be given by 

.c(r) = ~ 8 ( r -  1) (4.5) 
8~- 2 

where ~(r) is the one-dimensional Dirac delta function whose coefficient is 
determined by the normalization condition (4.4). 

A 

In five dimensions, the Fourier transform f(k) of a function f(r) which 
depends only on r = Irl is given by 

f ( k ) =  T 8~r2 fo ~r3f(r)jl(kr)dr (4.6) 

wherej l (x  ) is the spherical Bessel function of order one, viz., 

j l(x ) _ sinx cosx (4.7) 
x 2 x 

The inverse Fourier transform is given by 

1 8~r 2 foo~176 f ( r ) -  (2~rf r (4.8) 

Thus, the Fourier transform of ~-(r) is given by 

3 k 2 
~(k) = ~ j , ( k ) ~  1 - ~-~ + O(k4), k ~ 0  (4.9) 

From (3.1), d(k) is given by 

3j](k) ___> 10 
~(k) - k - 3j](k) -~ + O(k~ k ~ O  (4.10) 

From the asymptotic behavior of O(k) as k ~ 0, we find that 

e(r) ~ 4~r r 31 _ 0 . 1 2 6 7 ! 3 ,  r ~ o o  (4.11) 

The hit expectance density is shown in Fig. 13. It has very similar features 
to the corresponding curve in three dimensions: it diverges at the origin, a 
delta function at r = 1 and a small discontinuity at r = 2 that is too small to 
be resolved on the scale of Fig. 13. 
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7 4 0  C u m m i n g s  a n d  S t e l l  
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0 3 

Fig. 13. 
considered in Section 4.1 ( 

The hit expectance density e(r) for the FRF in five-dimensional Euclidean space 
) and for the CRF considered in Section 4.2 (- - -). 

4.2. The Constrained Random Flight (CRF) in Five Dimensions 

We now consider the simplest CRF in five dimensions in which the 
jump probability density is zero beyond r = 1, and the hit expectance 
density is constant for r < 1, viz., 

r(r) = 0, r > 1 (4.12a) 

e(r) = e, r < 1 (4.12b) 

As in Section 3.2, we seek a Wiener-Hopf  factorization of the key equation 
(3.17). We use an adaptation of the method due to Freasier and Isbister (13) 
(in their study of the five-dimensional hard hypersphere fluid) which may 
be regarded as an extension of Baxter's formalism. (11) We first note that 
since 

d �9 x j l ( x )  = d-~x j0 ( ) (4.13) 

O(k) may be written as 

= 8~r2 )0[~drrE(r)sinkrdr ~(k) --U 
(4.14) 
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where E(r) is given by 

E(r) = frr ~dt te(t) 

Integrating again by parts, we obtain 

~(k) = 8~r2 foo~ ff. (r)coskr 

where 

Similarly, 

where 

(4.15) 

(4.16) 

1 fr~176 2 - r2)dt (4.17) E (r) = fr~ dS f ~ = - ~ 

= 2 1 8q72f0 drrT(r)coskr ?(k) -~ -  foo drrT(r)sinkr= 1 - (4.18) 

frr 
r(r)  = dtt'r(t), 0 < r < 1 

= 0, r > 1 ( 4 . 1 9 )  

1 fr lr( t ) t ( t  2 T ( r ) = - ~  - r  2) dt, 0 < r <  1 

= O, r > 1 (4.20) 

A Wiener-Hopf  factorization may now be performed as in Section 3.2. We 
find that 

1 - ,~(k) = Q ( k )  ( ~ ( -  k)  (4.21) 

where Q(k) is regular and has no zeros in the upper half-plane. It is related 
to a real space function Q(r) by 

47r2Q(r) = ~ f f~dke- ik ' [1  - Q_(k)l (4.22) 

As in Section 3.2, it can be shown that 

Q(r) = 0, r < 0, r/> 1 (4.23) 

so tha t  

Q(k) = 1 - 4~r2 fooldr eikrQ(r) (4.24) 



742 Cummings and Stell 

The real space relations between Q(r) and ~'(r) and e(r) are given by 

ft,(r) = Q(r) + 4~r2foldt O(t)ff,(lr - t[), r > 0 (4.25) 

T(r) = Q(r) - 4~2frlat Q(t)Q(t  - r), 0 < r ~< 1 (4.26) 

In view of (4.12b) and (4.17) 

E ( r ) = g r  + 4 2 r2 + 2 8 ' 

where 

O<r< 1 (4.27) 

From (4.30) and (4.24) 

where 

a= e[3-12~r2 fo'dt Q(t)] 

b = cl2~r2foldttQ(t ) 

(4.30) 

(4.31) 

a = 3Ea = 3c0(0 ) (4.32) 

where a is defined in (3.14). Consequently, as detailed in Section 3.2, 

a = 0 (4.33) 

as a result of the normalization condition on the jump probability density 

~(r).  
Equation (4.29) may be integrated three times to yield 

Q ( r )  = ~4  ( r 4 -  l)  + ( r  3 - l)  + g ( r  2 - 1) + d ( r  - 1), 0 < r ~ 1 

(4.34) 

where c and d are constants to be determined. Note that the boundary 
condition on Q(r) at r = 1 given in (4.23) has been applied. 

Thus far, there are two equations for e, b, c, and d: (4.30) and (4.31). A 
third equation comes from (4.26) which, on differentiating and making use 
of (4.20) yields 

Q'(1) = 0 (4.35) 

En = f0~dt tne(0 (4.28) 

Substituting (4.27) into (4.25) for 0 < r < 1 and differentiating three times, 
we obtain 

Q'"(r) = ar + b (4.29) 
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The  final equat ion comes  f rom the differentiated fo rm of (4.26) considered 
at  r = 0: 

T'(r) = Q'(r) + 47rZQ(r) Q(0)  + 4rr2 frrldt Q(t)Q'( t  - r) 

W h e n  evaluated at  r -- 0, this becomes  

Q ' (0 )  + 2r = 0 (4.36) 

An  expression for e in terms of b, c, and  d follows f rom (4.31): 

= - b  (4.37) 

The  remaining  equat ions- - (4 .30)  [with (4.33)], (4.35), and  (4.36)--resul t  in 
the following explicit equat ions for b, c, and  d: 

3 3 (4.38) b + 4e + 6d  = ~r 2 

b + c + d = 0  (4.39) 
2 

d =  _2qr2( b c )2 g + ~ + d (4.40) 

F r o m  (4.38) and  (4.39) 

6 _ 3 _ 3d  (4.41) b = --~r + 4d, c = vr 2 

which on substi tut ion into (4.40) yields 

d2 7r 2 2 1 
1-8 + 5 d + - -  = 0 (4.42) 

2~r 2 

This is a quadra t ic  equat ion for d, to which there are two solutions: 

- 6  + 3 ~ -  - 6 -  3 ~ -  
dl - q./.2 , d 2 - ~r 2 (4.43) 

The  second solution for d is found  to give negative E and  so is not  
acceptable.  Hence,  d I is the correct  root, and  the complete  solution is given 
by  

- 1 8  + 
b - 7r z (4.44a) 

15 - 9 ~ -  
c - ~r 2 (4.44b) 

- 6  + 3~/-J- 
d - ~2 (4.44c) 
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1 (90 - 50~-)  ~ 0.344 (4.45) c = ~ -  5 

Substituting (4.34) (with a = 0) into (4.26) and solving for ~-(r), we 
obtain 

~'(r)=~-53 ( 4 ~ - _ 7 ) r 3 +  ~-59 ( 2 - , ~ - ) r ,  0 < r < l  

= 0, r > 1 (4.46) 

which can be readily verified as satisfying the normalization condition (4.4). 
An analysis of the small-k behavior of e(k) shows that 

~ ( k ) ~  100 1 k - ~ 0  (4.47) 

(1 + 12 k 2' 

so that 

e(r)---> 50 1 ~ 0 . 1 6 9 7 1  (4.48) 
r 7 '  4(1 

The 1/r 3 decay in e(r) for the CRF is the same as that of the FRF 
considered in Section 4.1 above, although the coefficient of the decay is 
different for the two random flights. The probability of return to the 
volume V, P(V),  is given by 

9 - 5 ~ -  
P ( V )  - ~ 0.0536 (4.49) 

15-5  

5. CONCLUDING REMARKS 

In this paper, we have considered the random flight problem in three 
and five dimensions. No solution to the CRF problem exists in one 
dimension. A Wiener-Hopf  factorization technique can be applied to the 
problem as posed by Eqs. (1.4) and (1.6). However, the resulting e is found 
to be purely imaginary. Another way of stating the nonexistence of a 
solution to this problem is the following: for random flights in which ~(r) is 
an even function of r and sufficiently short-ranged so that ~(k) has a 
regular Taylor's expansion in k 2 for small k, it follows quite generally that 
e(r) is infinite at the origin (as a simple asymptotic analysis will verify). 
Thus, one cannot expect to find a solution of the CRF problem in one 
dimension, at least for the short-ranged ~-(r) we consider here. 
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We have not considered random flights in Euclidean spaces with even 
dimensionality since the Wiener-Hopf technique employed in this paper 
does not result in closed-form analytic solutions for e(r) and ~'(r) for such 
spaces. The primary reason that the Wiener-Hopf technique works in three 
and five dimensions follows from Eqs. (3.22) and (4.16), which demonstrate 
that the three- and five-dimensional Fourier transforms of a spherically 
symmetric function can be written as one-dimensional Fourier transforms 
of closely related functions; this is not the case for two-dimensional Fourier 
transforms (nor for even-dimensional Fourier transforms in general). 

In future publications, we shall consider extensions of our analysis, 
and their application to various phenomena of physical interest. In particu- 
lar, it appears that our analysis is applicable to a number of problems in the 
theory of dilute polymers, and to continuum models in percolation theory. 
We discuss the latter at the end of the appendix below. The most obvious 
application of our techniques to polymer problems is through the standard 
correspondence (3) between an n-step flight and a polymer chain of n-bonds 
connecting n + 1 units. In this regard, our analytic techniques extend to 
bond probability densities ~-(rj- rj_ 1,ooj,o~j_ 1) that depend upon orienta- 
tions ~j and ~0j_ ~ of unitsj  and j  - 1 as well as the distance between them, 

~ j -  1 �9 
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APPENDIX: THE UNDERLYING ORNSTEIN-ZERNIKE STRUCTURE 
OF PROBLEMS OF RANDOM FLIGHT, LATTICE-GAS 
AND LIQUID-STATE THEORY, AND PERCOLATION 
THEORY 

There is a remarkable similarity between the generating function for 
an n-step random walk on a periodic lattice [the E(r, t) of Section 2.3] and 
the spin-spin correlation function of the spherical model (SM) of a 
ferromagnet (14) and its variants--the mean spherical model (MSM), (~s) the 
Gaussian model (GM), (14) and the mean spherical approximation (MSA) 
and Gaussian approximation (GA) for the Ising model. (16) Moreover, the 
SM and its variants all have lattice-gas versions, in which the particle- 
particle correlation function also looks like E(r, t) except for trivial factors. 
This connection between these two-point correlation functions and E(r, t) 
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has already been noted by a number of workers. 5 Here we shall make clear 
how the connection follows from the existence of an underlying equation of 
Ornstein-Zernike type in both the random walk (on a lattice) and lattice- 
gas problems. (We use lattice-gas language rather than spin-spin language 
to maximize correspondence between lattice systems and fluid results and 
we lean heavily on earlier work by one of us (18) in discussing the lattice 
gas.) We shall further discuss the connection between the generating 
function for a random flight not restricted to a lattice [the e(r,t) of this 
paper] and the two-particle correlation function for a fluid in the MSA. 
(The SM, GM, and MSM are not well defined for a fluid.) Here again the 
connection is via the fact that there is an equation of Ornstein-Zernike 
form underlying both the random-flight and fluid problems. Finally, we 
extend the connection induced by the Ornstein-Zernike equation to perco- 
lation theory and demonstrate an isomorphism between a particular ran- 
dom flight problem we have solved and a corresponding percolation 
problem. 

In a fluid of monatomic particles, the two-particle correlation function 
h(r,p) and the direct correlation function c(r,p) are functions that are 
related by an Ornstein-Zernike equation--in fact, the original Ornstein- 
Zernike equation, (19)' 6 

= c(r,p) + o f d s c ( s , o ) h ( r  - s,o) (A.la) h(r,p) 

Here p is the expected number density of the fluid system, which we 
assume to be uniform and infinite in volume. The similarity between (A.la) 
and (2.12a) is obvious. The differences are that c(r,p) in general depends 
nontrivially on p, while ~-(r) is independent of t, and that f~-(r)dr = 1 and 
~-(r)/> 0 because ~-(r) is a probability density whereas c(r, O) has no sign 
restriction and must satisfy f c ( r )d r  = 1/p only at singular points associated 
with the existence of a phase transition. In the lattice-gas analog of (A.la), 
the volume integral f ds is simply replaced by (or interpreted as) a sum over 
all lattice sites. In Fourier space, (A.la) becomes 

A A ^ A 

h (k,p) = c(k,p)  + pc (k,p)h (k,p) (A.lb) 

for both the fluid and lattice gas. In the fluid case, the Fourier transform is 
given by (3.2), 

f (k) = f dr f ( r )exp( ik-  r) 

5 See, for example, Ref. 17. 
6 Equation (A.1) can be thought of as defining c(r, p) in terms of h(r, p). In the statistical 

theory of fluids one has an exact (but intractable) second independent relation among c, h, 
and the pair potential that has no counterpart in random flight theory. For quantitative fluid 
results, the second relation is typically replaced by a relatively simple approximation, such as 
Eq. (A.13). 
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while in the case of a lattice gas, one sums over all the vectors r correspond- 
ing to lattice sites instead of integrating, so that 

f ( k )  = ~] f(r)exp(ik �9 r) (a.2) 
I" 

In the lattice-gas case, we shall choose a simple hypercubic lattice in d 
dimensions as a concrete example. Then 

d F ^ 
f(r)  = (2~z)- J d k  f (k)exp( - ik.  r )  (A.3) 

where the integration extends from - ~r to ~ for each of the d components 
of the vector k = (x I . . . . .  xa). It immediately follows from (A.1) and (A.3) 
that 

1 a ( d k  e x p ( -  ik- r) 
(2~r) J 1 ~ P-~('-k, ~ - ~r,0 + P h (r, p) (A.4) 

where ~r,O is a Kronecker delta. 
Similarly, the corresponding relation between Fourier transforms of 

the lattice-walk generating function E(r, t) and the single step probability 
T(r) on the same lattice is given by 

f d k e x p ( - ~ k ,  r) _ 8to + t E ( r , t )  (n.5a) 1 

(2~) a J  1 - tT(k) ' 

which follows immediately from the lattice walk analog of (2.12a) 

E(r, t) = T(r) + t ~  T(s)E(r  - s, t) (A.5b) 
s 

which, like (2.12a), is of the Ornstein-Zernike form. The formal similarity 
between (A.4) and (A.5a), like that between (2.12a) and (A. la), is clear. We 
shall next show that the differences one finds in functional forms between 
c(r, O) and T(r) do not destroy the essential correspondence between E(r, t) 
and the h (r, p) we are considering. 

Although T(r) = 0 for r = 0 in the simple random walk (to which we 
restrict ourselves here), c(r, p) at r = 0 is not zero in the SM, MSM, GM, or 
MSA. Moreover, it is only at r = 0 that the c(r,o) is p dependent in the 
context of these descriptions of the lattice gas. For both these reasons, it is 
useful to decompose e(r, p) into two terms, 

c(r, p) = C0(P)~r.0-F el(r) 

c'(r) = c(r,p) for rye0  (A.6) 

(?l(r) ---- 0 for r = 0 
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Then we can write (A.4) as 

1 f d k  exp(]._~z~l~)- ik.  r) zP - ( )E6r,, + ph(r,o) j (A.7a) 
(2r) a 

where (dropping the argument O of c o for notational simplicity) 

z = p(1 - pCo)-' (A.7b) 

In the SM and its variants, el(r) can be identified with the pair 
potential (~(r) between particles on lattice sites displaced from one another 
by the vector r v ~ 0, divided by k B T, where k B is Boltzmann's constant, and 
T is the absolute temperature. (is) Thus 

c](r) = - O ( r ) / k B T ,  r @ 0  (A.8) 

A typical 0(r) of interest is a nearest-neighbor interaction, such that ~(r) is 
nonzero only for ]r I = 1, where it is 01, so that 

c'(r) = c, for Irl = 1 

= 0 otherwise (A.9) 

c 1 = - g h / k B T ,  ~1(0) = 2dc I 

In (A.5), 

2(0) = 1 (A.10) 

because T(r) is a probability, so ~]rT(r) = 1. Thus, t = t is a singular value 
of the integrand, at which E(r, t) becomes infinite for d - - 1  and 2 and 
long-ranged for d >/3. [We recall that E(r, 1) is the expected number of 
visits to the lattice site described by vector r.] 

In (A.7), ~(0) is not necessarily unity, but for cl(r) >1 O, an identical 
singularity will occur for z such that 

1 - z ~ l ( 0 )  = 0 ( A . 1 1 )  

This is associated with a phase transition of the model and the details vary 
among the models described by (A.7). (18) In the Gaussian approximation, 
for example, c o = (p - 1)-] so z = p(1 - p) and the singularity occurs when 
p ( 1 -  p)~l(0)= 1 for all d. In the SM, MSM, and MSA, c o is instead 
determined by a "core condition ''(is) h(0,p)-- - 1  which from (A.7) re- 
quires the satisfaction of 

1 fakll- z~'(k)J = p ( 1 - p ) / z  (A.12) 
( 2 ~ )  d 

This relation prevents (A. 11) from being realized for nonzero temperature T 
when d = 1 or 2. We refer to Ref. 18 for details but note here that despite 
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the nonpositive value of h(0, P) the full right-hand side of (A.7a) remains 
positive for all r when ~ ( r )> /0  for the physically realizable range of O, 
0 ~ p ~ l .  

The upshot of the above analysis is that the left-hand sides of (A.5a) 
and (A.Ta) can be identified as the same function if one identifies T(r) with 
cl(r)/~l(0) and t with z~l(0). We have thus shown how the Ornstein- 
Zernike structure induces a correspondence (but not quite an identity) 
between E(r,t) and the lattice gas h(r,p) for the models under consider- 
ation despite some differences between T(r) and c(r, p). 

If we were looking at the case in which cl(r) ~ 0, the analysis would be 
different. For example, using (A.9) with r ~ 0, we would find the integrand 
of (A.Ta) becoming singular at k = (+  qr, + 7r . . . .  , + ~r), rather than at 
k - - 0 ,  for physically realizable densities O. But if we let z be negative, 
corresponding to unphysical (negative) p, we would then again find a 
simple identity between the integrals of (A.7) and (A.5) for certain pairs of t 
and z. The cl(r) ~ 0 corresponds to a repulsive interaction between parti- 
cles for r ~ 0 in the SM and its variants. (In spin-system language, it 
corresponds to an antiferromagnefic exchange interaction.) 

We return now to the fluid case, in which the mean spherical approxi- 
mation (2~ is typically of useful accuracy for hard-core molecules. Outside 
the core region, defined by the core diamater a, one has the fluid analog of 
(A.8) 

c(r ,p) = -~(r)/kBT for r > a, (A.13) 

while for r < a, one has a core condition reflecting the impenetrability of 
hard core molecules, 

h ( r , p ) = - I  for r < o  (A.14) 

(We shall take the hard-core diameter to be unity without loss of general- 
ity). In contrast to the lattice-gas case, there is a lack of correspondence 
between the h(r,p) in the MSA and the random flight e(r,t)  within the 
physically realizable range of p and T for 0(r) of interest. This is a result of 
the negative values that both c(r,p) and h(r,p) typically have over the 
whole range 0 ~< r ~< 1, as well as the highly nontrivial O dependence that 
e(r, P) typically assumes over this range, in contrast to the independence of 
z(r) on t. One sees this already for the case of a hard-sphere fluid in which 
O(r) = 0 for r > o, where (A.13) becomes (for hard spheres of unit diame- 
ter) 

c(r ,p) = 0 for r > 1 (A.15) 

If one solves (A.1) with conditions (A.14) and (A.15) for negative (and 
hence unphysical) p, however, one finds a distinguished p value, p = -3 /~ r ,  
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at which 

1 - p f c ( r , p ) d r =  0 (A.16) 

and for which ph(r,p) and pc(r,p) are identical to the e(r, 1) and ~-(r) 
respectively, discussed in Case 1 of Section 3.2. Put another way, the 
solution of (A.1) subject to conditions (A.14), (A.15), and (A.16) is exactly 
equivalent to the solution of (2.7) subject to (2.2) and (3.13). In the first 
case, one finds a solution at p = -3 /~r .  In the second case, equivalently, 
one finds the solution e = 3/~r. 

Similarly, one finds that each of the other cases we treat in which e(r) 
is prescribed inside and ~-(r) outside a unit ball corresponds exactly to a 
solution of (A.1) for the distinguished negative value of p that satisfies 
(A.16), subject to (A.14) and (A.13) for a prescribed q~(r)/ksT. These cases, 
which correspond to purely repulsive potentials in the M S A ,  are fluid 
generalizations of the lattice case in which e l ( r )<  0, discussed between 
(A.12) and (A.13). 

We shall end with one more remarkable application of the Ornstein- 
Zernike equation that leads again to our solution of (A.1) subject to 
conditions equivalent to (A. 14), (A. 15), and (A. 16), but this time involves a 
physically realizable number density. It is an application to the theory of 
percolation and gelation and involves the pair connectedness function 
P(r, p) that yields the probability of finding two points displaced by r that 
are in the same connected cluster of particles. P(r, p) is related to a "direct" 
connectivity function Ct(r,p), just as h(r,p) is related to c(r,p), by the 
Ornstein-Zernike equation (A.1). Moreover, the divergence of the mean 
cluster size is given by the condition 

1 = p / C t ( r ,  O) dr (A. 17) 

exactly analogous to the infinite compressibility condition (A.16). Condi- 
tion (A.17) occurs at the percolation threshold (or gelation) density Pc. We 
refer readers to Coniglio et al. ~21) for details of the general formalism. 

Suppose the particles whose clustering properties we are considering 
are randomly overlapping spheres of unit diameter, v Using the obvious 
definition of connectedness for such particles (which is not, however, the 
connectedness criterion considered in Ref. 21), one can apply the MSA to 
this problem, which yields the boundary conditions 

P(r ,p)  = 1 for r < 1 (A.18) 

Ct(r,p) = 0 for r > 1 (A.19) 

Except for the change in sign in (A.18), this is the pair of conditions (A.14) 

7 See Ref. 22 for an analysis of this problem using series expansion. 
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and (A.15), respectively. The sign change maps solutions of (m.1) at - O  
into solutions at p. Thus in the MSA, percolation occurs at a positive (and 
hence physically realizable) Pc of 3/~r for overlapping spheres. The solution 
of this problem (off the percolation threshold as well as on it) and some of 
its immediate generalizations were first obtained by Chiew and Glandt, and 
we refer to their discussion (23) for details. 

REFERENCES 

1. F. Spitzer, Principles of Random Walk (Van Nostrand, Princeton, New Jersey, 1964). 
2. M. N. Barber and B. W. Ninham, Random and Restricted Walks (Gordon and Breach, 

New York, 1970). 
3. H. Yamakawa, Modern Theory of Polymer Solutions (Harper and Row, New York, 1970); 

see Chap. 2. 
4. E. W. Montroll, in Applied Combinatorial Mathematics, E. F. Beckenback, ed. (Wiley, New 

York, 1964); and E. W. Montroll, J. Soc. Indust. Appl. Math. 4:241 (1956). 
5. P. W. Kasteleyn, in Graph Theory and Theoretical Physics, F. Harary, ed. (Academic Press, 

London, 1967). 
6. G. Polya, Math. Ann. 84:149 (1921). 
7. S. Chandrasekhar, Rev. Mod. Phys. 15:1 (1943). 
8. Lord Rayleigh, Phil. Mag. 37:321 (1919). 
9. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1 (John Wiley 

and Sons, New York, 1957). 
10. B. Noble, Methods Based on the Wiener-Hopf Technique (Pergamon Press, London, 1958). 
11. R. J. Baxter, Aust. J. Phys. 21:563 (1968). 
12. R. E. Bellman and K. L. Cooke, Differential-Difference Equations (Academic Press, New 

York, 1963). 
13. B. C. Freasier and D. J. Isbister, Mol. Phys. 42:927 (1981). 
14. T. H. Berlin and M. Kac, Phys. Rev. 86:821 (1952). 
15. H. W. Lewis and G. H. Wannier, Phys. Rev. 88:682 (1952); Phys. Rev. 90:1131 (1953). 
16. G. Stell, J. L. Lebowitz, S. Baer, and W. Theumann, J. Math. Phys. 7:1532 (1966). 
17. A. A. Maradudin, E. W. Montroll, G. H. Weiss, R. Herman, and H. W. Milnes, Green's 

Functions for Monatomic Cubic Lattices (Academie Royale de Belgique, Bruxelles, 1960); 
and G. Joyce, in Phase Transitions and Critical Phenomena, Vol. 2, C. Domb and M. S. 
Green, eds. (Academic Press, London, 1972). 

18. G. Stell, Phys. Rev. 184:135 (1969). 
19. L. S. Ornstein and F. Zernike, Proe. Aead. Sei. Amsterdam 17:793 (1914). 
20. J. K. Percus and G. Yevick, Phys. Rev. 136:290 (1964); J. L. Lebowitz and J. K. Pereus, 

Phys. Rev. 144:251 (1966). 
21. A. Coniglio, U. De Angelis, and A. Forlani, J. Phys. A. 10:1123 (1977). 
22. S. W. Haan and R. Zwanzig, J. Phys. A 10:1547 (1977). 
23. Y. C. Chiew and E. D. Glandt, J. Phys. A. 16:2599 (1983). 


